圆周率的计算公式
的有关信息介绍如下:圆周率计算公式如下:
圆周率(π)一般定义为一个贺者圆形的周长(C)与直径(d)之比,或直接定义为单位圆的周长的一半。由相似图形的性质可知,对于任何圆形,的值都是一样,这样就定义出常数π。
圆周率简介
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的最小正实数x。
圆周率用希腊字母π表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小丛拍并数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
1965年,英国数学家约翰·沃利斯出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个渗迹分数相乘的积。
2021年8月18日,圆周率π计算到小数点后62.8万亿位,创下该常数迄今最精确值记录。