对数函数定义域是?
的有关信息介绍如下:对于对数函数y=logg(x)来说,其定义域为:
1、对数函数的真数g(x)>0;
2、对数函数的底数f(x)>0,且f(x)≠1。
对数函数的底数要大于0且不为1的原因:
在一个普通对数式里 a<0,滑轮或=1 的时候是会有相应b的值高让胡。但是,根据对数定义:log以a为底a的对数;如果a=1或=0,那么log以a为底a的对数就可以等于一切实数,比如log11也可以等于2,3,4,5,等等。
对数函数是以幂为自变量,指数为因变量,底数为常量的函数。其是六类基本初等函数之一。如果a^x =N,那么数x叫做以a为底N的对数,记作x=logaN,读作以a为戚拦底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logaX就叫做对数函数,其中“log”是拉丁文logarithm的缩写。