角平分线定义
的有关信息介绍如下:角平分线定义如下:
从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。
三角形三条角平分线的交点叫做三角形的内心。三角形的内心到三边的距离相等,是该三角形内切圆的圆心。
性质:
1.角平分线分得的两个角相等,都等于该角知扰坦的一半。
2·角平分线上的点到角的两边的距离相等。
判定:
角的内部到角的两边距离相等搭桐的点,都在这个角的平分线上。
因此根据直线公理。
证明:已知PD⊥OA于D,PE⊥OB于E,且PD=PE,求证:OC平分∠AOB
证明:在Rt△OPD和Rt△OPE中:
OP=OP,PD=PE
∴Rt△OPD≌Rt△OPE(HL)
∴∠1=∠2
∴ OC平分∠AOB
作法:
方法一:
1.以点O为圆心,以任意长为半径画弧,两弧交角AOB两边 于点M,N。
2.分别以点M,N为圆心,以大于1/2MN的长度为半径画弧, 两弧交于点P。
3.作射线OP。
射线OP即为所求。
证明:连接PM,PN
在△POM和△PON中
∵OM=ON,PM=PN,PO=PO
∴△POM≌△PON(SSS)
∴∠POM=∠PON,即射线OP为角AOB的角平分线
当然,角平分线的作法有很多种。下面再提供一种尺规作图的方法供参考。
方法二:
1.在两边OA、OB上分别截取OM、OC和ON、OD,使OM=ON,OC=OD;
2.连接CN与DM,相李中交于P;
3.作射线OP。
射线OP即为所求。