∫dxdx=什么?
的有关信息介绍如下:解题过程如下图:
本题通野仿档过分部积分法来解。
它的主要原理是大链将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“颂乱反对幂三指”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数。
分部积分解题方法:
设函数f(x)、g(x)连续可导,对其乘积求导,有:
[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)
上式两边求不定积分,得:
∫[f(x)g(x)]'dx=∫f'(x)g(x)dx+∫f(x)g'(x)dx
得:
f(x)g(x)=∫g(x)df(x)+∫f(x)dg(x)
得:
∫f(x)dg(x)=f(x)g(x)-∫g(x)df(x)
写的更通俗些
令u=f(x),v=g(x),则微分du = f'(x)dx、dv = g'(x)dx
那么∫udv=uv-∫vdu
分部积分法通常用于被积函数为幂函数、指数函数、对数函数、三角函数、反三角函数的乘积的形式;u=f(x)、v=g(x)的选择也是容易积分的那个。