正多面体有几种?
的有关信息介绍如下:正多面体
的种数很少。多面体可以有无数,但正多面体只有正四面体
、正六面体、正八面体、正十二面体
、正二十面体五种。
证明
顶点数V,面数F,棱数E
设正多面体的每个面是正n边形,每个顶点有m条棱。棱数E应是面数F与n的积的一半(每两面共用一条棱),即
nF=2E -------------- ①
同时,E应是顶点数V与m的积的一半,即
mV=2E -------------- ②
由①、②,得
F=2E/n, V=2E/m,
代入欧拉公式
V+F-E=2,
有
2E/m+2E/n-E=2
整理后,得1/m+1/n=1/2+1/E.
由于E是正整数
,所以1/E>0。因此
1/m+1/n>1/2 -------------- ③
说明m,n不能同时大于3,否则③不成立。另一方面,由于m和n的意义(正多面体一个顶点处的棱数与多边形的边数)知,m≥3且n≥3。因此m和n至少有一个等于3
当m=3时,因为1/n>1/2-1/3=1/6,n又是正整数,所以n只能是3,4,5
同理n=3,m也只能是3,4,5
所以有以下几种情况:
n m 类型
3 3 正四面体
4 3 正六面体
3 4 正八面体
5 3 正十二面体
3 5 正二十面体
由于上述5种多面体确实可以用几何方法作出,而不可能有其他种类的正多面体
所以正多面体只有5种