什么是数学!
的有关信息介绍如下:数学是科学和我们日常生活的核心
数学是处理形状、数量和排列逻辑的科学。数学就在我们身边,在我们所做的一切中。它是我们日常生活中一切事物的基石,包括移动设备、计算机、软件、建筑(古代和现代)、艺术、货币、工程甚至体育。
自从有历史记录以来,数学的发现一直处于每个文明社会的前沿,甚至最原始和最早的文化都在使用数学。数学家雷蒙德-L-怀尔德(Raymond L. Wilder)在他的《数学概念的演变》(Dover Publications,2013年)一书中概述了对数学的需求,因为世界各地的社会要求越来越复杂,需要更先进的数学解决方案。
一个社会越复杂,数学需求就越复杂。原始部落需要的不过是计数的能力,但也用数学来计算太阳的位置和狩猎的物理学。"所有的记录,包括人类学和历史记录都表明,计数以及最终作为计数工具的数字系统构成了所有文化中数学元素的开端,"怀尔德在1968年写道。
人们经常会想,数学在他们的日常生活中有什么作用。在现代社会,应用数学等数学分支不仅是相关的,而且是关键的。应用数学涵盖了研究物理、生物或社会学世界的分支。
"应用数学的目标是在独立的学术领域之间建立联系,"阿兰-戈里利在《应用数学》中写道。现代应用数学的领域包括数学物理学、数学生物学、控制理论、航空航天工程和数学金融。格瑞利(Goriely)补充说,应用数学不仅能解决问题迅告塌,还能发现新问题或开发新的工程学科。应用数学的常见方法是建立一个现象的数学模型,解决该模型并制定改善性能的建议。
虽然不一定与应用数学相反,但纯数学是由抽象问题驱动的,而不是现实世界的问题。纯粹数学家所研究的大部分课题都源于具体的物理问题,但对这些现象的深入理解带来了问题和技术性。
这些抽象的问题和技术性问题是纯数学试图解决的,这些尝试为人类带来了重大发现,包括阿兰-图灵在1937年提出的通用图灵机理论。这台机器开始是一个抽象的想法,后来为现代计算机的发展奠定了基础。纯粹数学是抽象的,基于理论的,因此不受物理世界的限制。
根据格瑞利(Goriely)的说法,"应用数学对于纯数学来说,就像流行音乐对亩圆于古典音乐一样"。纯粹和友迅应用并不相互排斥,但它们根植于数学和问题解决的不同领域。尽管纯数学和应用数学所涉及的复杂数学超出了大多数人的理解范围,但从这些过程中开发出来的解决方案影响并改善了许多人的生活。